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ABSTRACT

Approximate methods to estimate solutions to the radiative transfer equation are essential for the
understanding of atmospheres of exoplanets and brown dwarfs. The simplest and most popular choice
is the “two-stream method” which is often used to produce simple yet e↵ective models for radiative
transfer in scattering and absorbing media. Toon et al. (1989) (Toon89) outlined a two-stream method
for computing reflected light and thermal spectra and was later implemented in the open-source ra-
diative transfer model PICASO. In Part I of this series, we developed an analytical spherical harmonics
method for solving the radiative transfer equation for reflected solar radiation (Rooney et al. 2023)
which was implemented in PICASO to increase the accuracy of the code by o↵ering a higher-order
approximation. This work is an extension of this spherical harmonics derivation to study thermal
emission spectroscopy. We highlight the model di↵erences in the approach for thermal emission and
benchmark the 4-term method (SH4) against Toon89 and a high-stream discrete-ordinates method,
CDISORT. By comparing the spectra produced by each model we demonstrate that the SH4 method
provides a significant increase in accuracy, compared to Toon89, which can be attributed to the in-
creased order of approximation and to the choice of phase function. We also explore the trade-o↵
between computational time and model accuracy. We find that our 4-term method is twice as slow as
our 2-term method, but is up to five times more accurate, when compared with CDISORT. Therefore,
SH4 provides excellent improvement in model accuracy with minimal sacrifice in numerical expense.

Keywords: Radiative transfer (1335) — Radiative transfer equation (1336)

1. INTRODUCTION

Studying the atmospheres of planets and substellar objects relies on computationally e�cient methods to solve
the radiative transfer equation in scattering and absorbing media. However, exact solutions typically do not exist.
Scientists rely on approximate, parameterized methods to estimate solutions, but inclusion of intricate microphysical
detail can render these models computationally intractable for useful applications (Stephens & Preisendorfer 1984;
Thomas & Stamnes 2002; Chandrasekhar 1960; Liou 2002). The goal of radiative transfer parameterization in numerical
models for exoplanet and brown dwarf atmospheres is to provide computationally e�cient yet accurate methods to
calculate radiative fluxes and heating rates (Stephens 1984). The approach to solving the radiative transfer equation is
frequently chosen through a balance between accuracy and computational e�ciency. In many practical cases, there are
significant uncertainties associated with defining characteristics of the atmosphere, such as the composition, scattering
phase function and opacities. Such uncertainties often dominate over small model errors in the solution, and therefore,
obtaining a computationally e�cient solution often takes precedence.
The most popular approximate methods for solving the radiative transfer equation are the (1) discrete-ordinates

method (Chandrasekhar 1960; Stamnes et al. 1988, 2000), (2) Monte-Carlo method (Modest 2013; Iwabuchi 2006)
and (3) spherical harmonics method (Modest 1989, 2013; Olfe 1967; van Wijngaarden & Happer 2022). The general
approach of the discrete-ordinates method (DOM) is to discretize the solid angle by a finite number L of directions
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or “streams”, along which the radiative intensities are tracked. DISORT (Stamnes et al. 1988, 2000) is an example
of a discrete ordinate algorithm for radiative transfer that is capable of simulating thermal emission, absorption, and
scattering for arbitrary phase functions across the electromagnetic spectrum. The convergence of DOM can depreciate
for optically thick media (Modest 2013; Fiveland & Jessee 1996; Lewis & Miller 1984), however, there exist a number
of acceleration schemes to improve the convergence rate of DOM (Fiveland & Jessee 1996; Lewis & Miller 1984).
Monte-Carlo methods track emitted photons throughout the media, and although accepted to be a largely accurate
method, it is computationally taxing which makes it unsuitable for some applications (Iwabuchi 2006; Mayer 2009).
The spherical harmonics (SH) approximation, denoted PL�1, operates by expanding the intensity and phase function
into a series of L spherical harmonics, or Legendre polynomials. This decouples spatial and directional dependencies.
This method involves fewer equations than DOM and is potentially more accurate with comparable computational
expense, but higher order expansions are mathematically complex and increasingly di�cult to implement as L increases
(Ge et al. 2015; van Wijngaarden & Happer 2022).
Such models have been studied for reflected solar radiation (e.g., most recently in our Part 1. Rooney et al. 2023). For

example, the two-stream discrete-ordinates (L = 2) and two-term spherical harmonics (P1) techniques are often used
to provide simple yet e↵ective models for atmospheric radiative transfer and are widely considered some of the simplest
and most prolific approximations (Meador & Weaver 1980; King 1986; Chandrasekhar 1960; Mihalas & Mihalas 2013;
van Wijngaarden & Happer 2022; Li & Ramaswamy 1996; Zhang & Li 2013). Two-stream methods are most useful for
obtaining angle-averaged quantities such as heating rates and albedos (Schuster 1905; Meador & Weaver 1980; Heng
& Marley 2018).
These studies of reflected solar radiation have shown that even though the two-stream methods are computationally

preferable, they are often unsuitable for certain physical conditions. For example, non-physical solutions to the two-
stream method are obtained for the case of a collimated incident beam (Meador & Weaver 1980). However, there
exist model adjustments to correct for these limitations in the two-stream method. In particular, applying the delta
(�)-adjustment to the two-stream technique improves the accuracy of radiative flux calculations by taking into account
strong forward scattering due to large particles (Joseph et al. 1976; Wiscombe 1977; King 1986; Liou et al. 1988).
Though these corrections often help to improve accuracy, it has also been shown that improved accuracy can be

achieved by considering four-stream approximations (Liou 1974; Liou et al. 1988; Cuzzi et al. 1982; Rooney et al.
2023). Four-stream methods are also still able to leverage the �-approximation to allow for strong forward scattering.
However, an increase in the order of approximation comes with the penalty of an increase in computational expense.
Four-stream approximations are significantly more e�cacious in cases of non-isotropic scattering and can even be
used in general circulation models (Liou et al. 1988; Heng & Marley 2018). Their performance has been explored for
both homogeneous and inhomogeneous atmospheres in reflected solar radiation (Liou 1973; Liou et al. 1988; Fu 1991;
Shibata & Uchiyama 1992).
As well as solar radiation, these approximations can also be applied to study scattering in the presence of thermal

emission (Mihalas 1978; Toon et al. 1989; Fu et al. 1997), which is the focus of this work. Infrared scattering is
essential to understand emission spectra of exoplanets and brown dwarfs (Taylor et al. 2021), due to the ubiquity of
clouds in atmospheres (Marley et al. 2013; Gao & Powell 2021) and the defining role they play in sculpting thermal
emission. Specifically, the thermal emission for some classes of extrasolar planets and brown dwarfs (e.g., the L
dwarfs) arises, in some wavelengths, from within the scattering, absorbing cloud layers. Therefore, in those cases it
is particularly important to treat the radiative transfer within the cloud as carefully as possible. Additionally, the
radiative-equilibrium temperature structure of an atmosphere (e.g., Mukherjee et al. 2023) depends upon the di↵erence
between upwards and downwards incident and emergent fluxes. Overall, an accurate treatment within the scattering
cloud decks is required to have confidence in computed thermal profiles.
Two-stream methods have been implemented for infrared thermal radiation, such as the well-known work of Toon

et al. (1989), who derived a general two-stream solution for the upward and downward fluxes within a single homo-
geneous layer. By considering continuity of flux across a number of stacked, homogeneous layers, the single-layer
solution is extended to a multi-layer atmosphere. The final solution is obtained through the two-stream source func-
tion technique, with the source function written in terms of the two-stream intensity. As a side note, related to the
two-stream technique are popular analytical calculations of temperature-pressure profiles to further understand the
thermal atmospheric structure of atmospheres (Hubeny et al. 2003; Hansen et al. 2008; Guillot 2010; Heng & Kopparla
2012; Heng & Showman 2015; Robinson & Catling 2012; Parmentier & Guillot 2014).
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The Toon et al. (1989) methodology has in particular been utilized extensively for the study of planetary and
substellar atmospheres (e.g. McKay et al. 1989; Marley et al. 1999; Burrows et al. 1997; Fortney et al. 2005; Marley
et al. 2021) and this implementation is available in open-source Python code PICASO (Batalha et al. 2022). This
approach, however, is currently limited to two-stream approximations. Despite its usefulness in radiative transfer
calculations due to its simplicity and ease of implementation, Toon et al. (1989) reported that relative errors in the
emissivity calculated by such approaches can be as much as 10% in optically thin cases.
In addition to the potential errors reported by Toon et al. (1989), it has also been shown that increasing the

approximations to four-streams improves the accuracy of the infrared models, similar to the reflected solar case (Fu
et al. 1997; Liou et al. 1988; Lin et al. 2013). Fu et al. (1997) applied the �-two and four-stream discrete-ordinates
method (Chandrasekhar 1960; Stamnes et al. 1988, 2000) to solve the infrared radiative transfer equation in a vertically
inhomogeneous atmosphere. By comparing the approximations to the high-order �-129-stream model, the authors
found that the �-two-stream scheme can produce acceptable results under most atmospheric conditions, but su↵ers
from large errors for small optical depth. The �-four-stream method yields high accuracy in radiative fluxes and
heating rates under all atmospheric conditions considered, however, the authors acknowledge a significant increase
in computational cost. Zhang et al. (2016) also investigated �-two and four-stream discrete-ordinates for infrared
radiative transfer, demonstrating an analytical approach. By comparing the methods to a �-64-stream DOM method,
the authors similarly conclude that the four-stream method outperforms two-streams, particularly for small optical
depths, reporting relative errors as high as 15% for two-stream versus 2% for four-stream.
These studies motivated the development of an analytical spherical harmonics method for solving the radiative

transfer equation. The first component for solar radiation was published recently in Rooney et al. (2023). In a
similar vein to the Toon et al. (1989) methodology, Rooney et al. (2023) derived and solved a system of equations
for the upwards and downwards fluxes at every layer of our atmosphere, with the critical di↵erence of a �-adjusted
four-term spherical harmonics (P3) approximation in place of Toon’s two-stream approach. By applying the source-
function technique to calculate the azimuthally averaged intensity emerging from the top of a vertically inhomogeneous
atmosphere, we can compute the spectrum for clear and cloudy planets or brown dwarfs. Though the spherical
harmonics approaches for reflected light and thermal emission are largely identical, the primary di↵erences lie in the
source terms, boundary conditions and the related applications.
Therefore, the present work is an extension to the derivation in Rooney et al. (2023), namely, applying the spherical

harmonics model to thermal emission spectroscopy. We aim to make this manuscript easily cross-referenced with the
numerical method implemented within PICASO source code. Throughout the manuscript, we refer the reader to Rooney
et al. (2023) for more intricate detail into the derivation of the spherical harmonics method for 1D radiative transfer,
when necessary. Here, we include only the key mathematical expressions that define the thermal emission model. We
have also included persistent hyperlinks that can be accessed by clicking the following icon: �, that will redirect the
reader to the relevant lines of code (stored on Github) corresponding to the relevant mathematical expression.
We outline this work as follows: in Sections 2 and 3, we briefly explain the derivation of the spherical harmonics

(SH) method for thermal radiation. As aforementioned, the SH method for reflected light and thermal emission are
largely identical, with the exception of the source term and boundary conditions. In this section, we focus on the
di↵erences incurred by considering the thermal source term and relevant boundary conditions. We consider both two
and four-stream approximations for plane-parallel atmospheres of many layers, where we apply the source-function
technique to handle the multi-layer aspect of the model.
In Section 4, we compare the two and four-term spherical harmonics models and the Toon et al. (1989) approach

implemented in PICASO to a 16 and 32-stream discrete ordinates method, CDISORT to illustrate the accuracy gains by
increasing the number of streams from two to four. We also explore the impact of this order increase on computational
time, and discuss the timing-accuracy trade-o↵ that might be considered when choosing a model.

2. SOLVING THE RADIATIVE TRANSFER EQUATION USING SPHERICAL HARMONICS

We wish to use the spherical harmonics technique to solve the azimuthally-averaged, one-dimensional radiative
transfer equation:

µ
@I

@⌧
(⌧, µ) = I(⌧, µ)�

w0

2

Z
1

�1

I(⌧, µ0)P (µ, µ0)dµ0
� 2⇡(1� w0)B(T ), (1)
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where the location within the atmosphere is specified by ⌧ 2 [0, ⌧N ], (where ⌧N is the cumulative optical depth), I is
the azimuthally averaged intensity and w0 is the single scattering albedo, B(T ) is the Planck function at temperature
T , and P (µ, µ0) is the azimuthally averaged scattering phase function.
We note the similarities between the radiative transfer equation for thermal emission (1) and that for reflected light,

outlined in Rooney et al. (2023). The di↵erence lies in the final term on the right-hand side, the source term S(T ),
defined as

S(T ) =

8
<

:
2⇡(1� w0)B(T ), thermal emission,

w0
4⇡F�e

� ⌧
µ0 P (µ,�µ0), reflected light.

(2)

We emphasise that all other terms in the azimuthally-averaged, one-dimensional radiative transfer equation (1) are
identical for reflected light and thermal emission. This allows us to largely follow the spherical harmonics model
derivation outlined in Rooney et al. (2023) for reflected light, with a few modifications to allow for the di↵erent source
term. We will highlight these di↵erences throughout this work. However, we refer the reader to Rooney et al. (2023)
for a more in-depth discussion of the general model derivation.
By expanding the phase function and intensity in terms of Legendre polynomials Pl, up to given order L:

P (µ, µ0) =
LX

l=0

�lPl(µ)Pl(µ
0), (3)

I(⌧, µ) =
LX

l=0

(2l + 1)Il(⌧)Pl(µ), (4)

where the coe�cients �l of the phase function expansion can be determined from the orthogonal property of Legendre
polynomials (Liou 2002):

�l =
2l + 1

2

Z
1

�1

P (cos⇥)Pl(cos⇥)d cos⇥. (5)

we can substitute (3) and (4) into (1) and use both the orthogonality property and recursion relation of Legendre
polynomials to obtain

LX

l=0


(l + 1)

dIl+1

d⌧
+ l

dIl�1

d⌧

�
Pl(µ) =

LX

l=0

[alIl(⌧)� bl�0l]Pl(µ). (6)

Here, �0l is the Dirac-delta function (�0l = 1 for l = 0, and 0 otherwise) and

al = (2l + 1)� w0�l, (7)

bl = 2⇡(1� w0)B(T ), (8)

for l = 0, · · · , L. Here, al is identical to that derived for reflected light (Rooney et al. 2023), whereas the expressions
for bl di↵er. This is because the source term (2) is relevant only for the bl terms. Thus, any analysis involving only
the al terms and not the bl terms will be identical for reflected light and thermal emission.
We assume that the Planck function with a single layer B(T ) can be represented as a Taylor series expansion (as

done in Toon et al. 1989), namely
B(T (⌧)) = B0 +B1⌧, (9)

where B0 is the Planck function evaluated at ⌧ = 0 (or the top of the layer) and B1 is related to the Planck function
at temperature Tbot at the bottom of the layer ⌧N :

B1 =
B(Tbot)�B0

⌧N
(10)

2.1. P1 Multiple Layers

For clarity and to demonstrate the spherical harmonics methodology, Rooney et al. (2023) began with an atmosphere
consisting of a single horizontally homogeneous layer, before extending the analysis to the more practical case of multiple
layers. Here, we proceed immediately to the multiple-layer solution.
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Let us first study the two-stream spherical harmonics problem, denoted P1, where L = 1 represents the highest
Legendre polynomial in the expansion. Consider an atmosphere consisting of N horizontally homogeneous layers,
where layer n is characterized by single scattering albedo w0,n, asymmetry parameter g0,n and optical thickness
@⌧n = ⌧n � ⌧n�1 for n = 1, . . . , N .
To solve the radiative transfer equation (1) in the nth layer we rescale the optical depth as

⌧̂ = ⌧ � ⌧n�1, ⌧̂ 2 [0, @⌧n]. (11)

Dropping the hats, we continue with the solutions within layer n for ⌧ 2 [0, @⌧n].
We can formulate (6) as a matrix system within layer n:

d

d⌧

 
I0,n
I1,n

!
=

 
0 a1,n

a0,n 0

! 
I0,n
I1,n

!
�

 
b1
b0

!
, (12)

Closely following the methodology outlined in Rooney et al. (2023), we arrive at the layer-wise solution:

 
I0,n
I1,n

!
=

 
e��n⌧ e�n⌧

�qne��n⌧ qne�n⌧

! 
X0,n

X1,n

!
+

2⇡(1� w0,n)

a0,n

 
B0,n + ⌧B1,n

B1,n

a1

!
, (13)

for ⌧ 2 [0, @⌧n], where

al,n = (2l + 1)� w0,n�l,n, (14)

is the multi-layer extension of (7), and

�n =
p
a0,na1,n, qn = �n/a1,n. (15)

Following Rooney et al. (2023), we can rewrite system (13) in terms of fluxes,

 
F�
n

F+

n

!
=

 
Q+

n e
��n⌧ Q�

n e
�n⌧

Q�
n e

��n⌧ Q+

n e
�n⌧

! 
X0,n

X1,n

!
+

 
Z�
n

Z+

n

!
, (16)

where Q±
n = ⇡(1± 2qn) � and Z±

n given by �

Z±
n (⌧) =

⇡(1� w0,n)

a0,n

✓
B1,n⌧ +B0,n ±

2

a1,n
B1,n

◆
, (17)

with boundary conditions �

F�
1
(0) = 0, (18)

F�
n (@⌧n) = F�

n+1
(0), (19)

F+

n (@⌧n) = F+

n+1
(0), (20)

and

F+

N (⌧N ) =

8
<

:
⇡
�
B(⌧N ) + 2

3

@B
@⌧ (⌧N )

�
, non-terrestrial,

⇡B(⌧N ) +ASF�(⌧N ) terrestrial, hard surface,
(21)

where AS is the surface reflectivity. The final boundary condition (21) is derived from Mihalas (1978) in Appendix A.
These boundary conditions enforce that there is no incident di↵use flux at the top of the atmosphere, and the upward
flux at the surface is either that from a (potentially) reflective surface or an estimate of the upwards flux emerging from
an atmosphere that continues below the lowermost model grid point (e.g., a giant planet or brown dwarf atmosphere).
The spherical harmonics flux problem is formulated in PICASO by representing the system in terms of banded matrices,
and solved using the solve banded functionality of SciPy (Virtanen et al. 2020) �.
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2.2. P3 Multiple Layers

Similarly, the P3 problem for multiple layers has the solution:

0

BBB@

I0,n
I1,n
I2,n
I3,n

1

CCCA
=

0

BBB@

e��1,n⌧ e�1,n⌧ e��2,n⌧ e�2,n⌧

R1,ne��1,n⌧ �R1,ne�1,n⌧ R2,ne��2,n⌧ �R2,ne�2,n⌧

Q1,ne��1,n⌧ Q1,ne�1,n⌧ Q2,ne��2,n⌧ Q2,ne�2,n⌧

S1,ne��1,n⌧ �S1,ne�1,n⌧ S2,ne��2,n⌧ �S2,ne�2,n⌧

1

CCCA

0

BBB@

X0,n

X1,n

X2,n

X3,n

1

CCCA
�

2⇡(1� w0,n)

a0,n

0

BBBB@

B0,n + ⌧B1,n
B1,n

a1,n

0

0

1

CCCCA
, (22)

for ⌧ 2 [0, @⌧n], where �

�1,2,n =

r
1

2
(�n ±

p
�2
n � 4�n), �n = a0,na1,n +

1

9
a2,na3,n +

4

9
a0,na3,n, �n =

1

9
a0,na1,na2,na3,n, (23)

and �

R1,2,n = �
a0,n
�1,2,n

, Q1,2,n =
1

2

 
a0,na1,n
�2

1,2,n

� 1

!
, S1,2,n = �

3

2a3,n

✓
a0,na1,n
�1,2,n

� �1,2,n

◆
. (24)

This problem can be written in terms of fluxes as

0

BBB@

F�
n

f�
n

F+

n

f+

n

1

CCCA
=

0

BBBB@

p�
1,ne

��1,n⌧ p+
1,ne

�1,n⌧ p�
2,ne

��2,n⌧ p+
2,ne

�2,n⌧

q�
1,ne

��1,n⌧ q+
1,ne

�1,n⌧ q�
2,ne

��2,n⌧ q+
2,ne

�2,n⌧

p+
1,ne

��1,n⌧ p�
1,ne

�1,n⌧ p+
2,ne

��2,n⌧ p�
2,ne

�2,n⌧

q+
1,ne

��1,n⌧ q�
1,ne

�1,n⌧ q+
2,ne

��2,n⌧ q�
2,ne

�2,n⌧

1

CCCCA

0

BBB@

X0,n

X1,n

X2,n

X3,n

1

CCCA
+

0

BBBB@

Z�
1,n

Z�
2,n

Z+

1,n

Z+

2,n

1

CCCCA
, (25)

where p±
1,2,n = ⇡(1± 2R1,2,n + 5

4
Q1,2,n), q

±
1,2,n = ⇡(� 1

4
+ 5

4
Q1,2,n ± 2S1,2,n) �, and

Z±
1,n(⌧) =

⇡(1� w0,n)

a0,n
(B1,n⌧ +B0,n ±

2

a1,n
B1,n)), (26)

Z±
2,n(⌧) = �

⇡(1� w0,n)

4a0,n
(B1,n⌧ +B0,n). (27)

The boundary conditions for the P3 flux problem are �

F�
1
(0) = 0, f�

1
(0) = 0, (28)

F�
n (@⌧n) = F�

n+1
(0), f�

n (@⌧n) = f�
n+1

(0), (29)

F+

n (@⌧n) = F+

n+1
(0), f+

n (@⌧n) = f+

n+1
(0), (30)

and

F+

N (⌧N ) =

8
<

:
⇡
�
B(⌧N ) + 2

3

@B
@⌧ (⌧N )

�
, non-terrestrial,

⇡B(⌧N ) +ASf�(⌧N ), terrestrial, hard surface,
(31)

f+

N (⌧N ) =

8
<

:
�

⇡B(⌧N )

4
, non-terrestrial,

�
⇡B(⌧N )

4
+ASf�(⌧N ), terrestrial, hard surface,

(32)

for n = 1, 2, · · · , N � 1 �, where AS is the surface reflectivity. As with the P1 case, the derivation of the bottom
boundary conditions (31)–(32) are derived in Appendix A from Mihalas (1978). As for the P1 case, the spherical
harmonics flux problem is formulated in PICASO by representing the system in terms of banded matrices, and solved
using the solve banded functionality of SciPy (Virtanen et al. 2020).
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3. SOURCE FUNCTION TECHNIQUE

Following the methodology of Toon et al. (1989), we apply the source function technique to calculate the emergent
intensity from the top of the atmosphere. The radiative transfer equation (1) can be solved to yield the azimuthally
integrated intensity at angle µ at the top of the nth layer (⌧ = 0) as

In(0, µ) = In(@⌧n, µ)e
� @⌧n

µ +
1

µ

Z @⌧n

0

Svte
� ⌧

µ d⌧, (33)

for

Svt =
w0,n

2

Z
1

�1

It(⌧, µ
0)P (µ, µ0)dµ0 + Sn(⌧), (34)

where

Sn(⌧) = 2⇡(1� w0,n)(B0,n +B1,n⌧). (35)

Toon et al. (1989) showed that infrared intensities can be estimated with su�cient accuracy by using the two-stream
approximation to define the source function in the equation of radiative transfer, therefore, we use It, the solution
to the P1/P3 problem outlined in Section 2, in place of the true intensity in the source term (34). Therefore we can
rewrite (34) as

Svt = w0,n

LX

l=0

�lIl(⌧)Pl(µ) + Sn(⌧). (36)

Let us consider the integral term in (33). Using (36), this can be written as

Z @⌧n

0

Svte
� ⌧

µ d⌧ = w0,n

LX

l=0

�lPl(µ)

Z @⌧n

0

Il(⌧)e
� ⌧

µ d⌧ +

Z @⌧n

0

Sn(⌧)e
� ⌧

µ d⌧. (37)

We can calculate the second term on the right-hand side of (37) to be �

Z @⌧n

0

Sn(⌧)e
� ⌧

µ d⌧ = 2⇡µ(1� w0,n)
h
B0,n

⇣
1� e�

@⌧
µ

⌘
+B1,n

⇣
µ� (@⌧ + µ) e�

@⌧
µ

⌘i
(38)

Next, let us write An,int =
R @⌧n
0

Il(⌧)e
� ⌧

µ d⌧ . This is calculated identically for reflected light, and is outlined in detail
in Rooney et al. (2023), where the solution is given by

An,int = AnXn +Nn (39)

where matrix An is defined in Rooney et al. (2023) � and Xn are the coe�cients we solve for in the P1 and P3 flux
problems (16)–(21) and (25)–(32) respectively. Vector Nn di↵ers from that for reflected light.
For infrared sources, Nn is defined as

N0,n =
2⇡µ (1� w0,n)

a0,n

h
B0,n

⇣
1� e�

@⌧
µ

⌘
+B1,n

⇣
µ� (@⌧ + µ) e�

@⌧
µ

⌘i
, (40)

N1,n =
2⇡µ(1� w0,n)

a0,n

B1,n

a1,n

⇣
1� e�

@⌧
µ

⌘
, (41)

N2,n = N3,n = 0. (42)

Substituting An,int (39) and the integrated source term (38) back into (37), we can use (33) to calculate the azimuthally
integrated intensity emerging from the top of the nth layer. By beginning at the bottom of the atmosphere (n = N)
and working our way up layer-by-layer, we can derive the azimuthally integrated intensity at the top of the atmosphere.
This intensity is used to calculate the infrared flux to predict the observed atmospheric spectra.
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4. ANALYSIS

To quantitatively analyze the performance of the spherical harmonics method for infrared radiative transfer, we
compare our results with Toon89 and CDISORT, a version of the discrete ordinate solver, DISORT, written in C rather
than FORTRAN (Stamnes et al. 1988, 2000; Mayer & Kylling 2005; Buras et al. 2011). CDISORT is a versatile, well-
tested and widely used radiative transfer software, with advanced numerical capabilities. CDISORT has the capacity
to model L-stream discrete ordinates approximations, where L is arbitrary and considerably greater than 4 (we will
study 16 and 32 stream calculations in this work).
One important note to consider before delving into comparisons of Toon89 and CDISORT is the di↵erent scattering

phase functions. The Toon89 methodology utilizes the hemispheric mean phase function for infrared scattering (Toon
et al. 1989). The hemispheric mean approach is derived by assuming that the phase function takes the value of 1+g0 in
the forward scattering hemisphere, and 1�g0 in the backward scattering hemisphere, where g0 denotes the asymmetry
parameter. Toon et al. (1989) chose this technique because for infrared wavelengths, it assumes the correct relationship
between flux and intensity and produces the proper emissivity in the limiting case of dominant absorption (w0 = 0)
for a semi-infinite atmosphere.
On the other hand, CDISORT, SH2 and SH4 all utilize the Henyey-Greenstein phase function (Henyey & Greenstein

1941):

PHG(cos⇥) =
1� g2

0

(1 + g2
0
� 2g0 cos⇥)3/2

, (43)

where the scattering angle ⇥ is defined as

cos⇥ = µµ0
�

p
1� µ2

p
1� µ02 cos(�� �0). (44)

for incoming and outgoing radiation angular directions (µ,�) and (µ0,�0) respectively.
We emphasize this di↵erence in computational methods to foreshadow di↵erences that arise between the method-

ologies. In what follows, we first compare two benchmark spectra in §4.1. Then, we isolate the dependence of each
method’s accuracy on scattering parameters (single scattering, asymmetry) in §4.2. Lastly, we baseline the timing of
these methodologies in §4.3 to investigate the trade-o↵ between computational time and accuracy.

4.1. Comparison of benchmark spectra

We consider two di↵erent benchmark atmospheres on which to conduct our analysis: (i) a brown dwarf with e↵ective
temperature Te↵ = 1200 K, gravity g = 200 m/s2, solar metallicity, solar C/O and forsterite, iron, corundum clouds,
and (ii) planet similar to Jupiter with g =25m/s2, semi major axis=5 AU, orbiting a Sun-like star, with H2O and NH3

clouds. The cloudy and non-cloudy infrared spectra, as predicted by the Toon et al. (1989) implementation in PICASO

(Batalha et al. 2022), is denoted Toon89.
As shown in Figure 1 the cases chosen both have spectra that are largely a↵ected by the presence of clouds. In

both cases, the clouds act to prevent photon contribution from the deepest, hottest, layers. As a result, the pressure
range probed by the cloudy models is limited to the upper, cooler layers, creating spectral features that appear muted,
relative to the cloud-free counterpart. We choose these cases in order to test the accuracy of these methodologies in
the scattering-dominated limit for typical cloudy objects. We note that the di↵erent methodologies agree in the case
of no scattering, indicating that any spectral di↵erences in the cloudy cases are a consequence of the approximations
implemented to deal with scattering.
In Figure 2(b) we plot the infrared spectra for cloudy atmosphere (i), predicted by 16-stream CDISORT, Toon89, two-

term spherical harmonics (SH2) and four-term spherical harmonics (SH4). Note that we indicate whether the models
utilise the Henyey-Greenstein (HG) or hemispheric mean (hem-mean) phase function in the figure legend. Figure 2(b)
depicts the single scattering, asymmetry and optical depth profiles with pressure, averaged in the wavelength range
1–1.4µm, as indicated by the grey dashed lines on the spectra plot. We choose this wavelength window to average the
scattering parameters as it is a region with significant di↵erences in the spectra produced by Toon89 and the other
models. The cloud profile is shaped by two cloud layers: one smaller cloud layer below 1 bar overlayed by a larger
optical depth cloud layer above 1 bar. In the high optical depth region (⌧ >0.5), the associated optical properties
range between 0.6–0.75 for the asymmetry and 0.8–0.94 for the single scattering. These values are typical for these
condensate species and present a less forward scattering example, as compared with the “Jupiter-like” example.
There is an immediately noticeable di↵erence between Toon89, CDISORT and SH2/4. Given the close agreement of

SH2 with 16-stream CDISORT compared to Toon89, which is also a two-stream technique, we can isolate that it is
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(a) Te↵ = 1270K. (b) Jupiter-like.

Figure 1. Infrared spectra with and without clouds predicted by Toon89 in PICASO for two di↵erent atmospheres: (a) brown
dwarf with e↵ective temperature T =1200 K, gravity g =200 m/s2, solar metallicity, solar C/O and forsterite, iron, corundum
clouds; (b) planet similar to Jupiter with g =25m/s2, semi major axis=5 AU, orbiting a Sun-like star, with H2O and NH3

clouds.

(a) (b)

Figure 2. Comparison between the infrared spectra predicted by 16-stream CDISORT, PICASO, 2-term spherical harmonics (SH2)
and 4-term spherical harmonics (SH4) for a cloudy brown dwarf with e↵ective temperature T =1200 K, gravity g =200 m/s2,
solar metallicity, solar C/O and forsterite, iron, corundum clouds. We use HG and hem-mean to indicate that the model phase
function is Henyey-Greenstein or hemispheric mean respectively. The scattering properties plotted in subfigure (a) correspond
to the average values within the 1-1.4µm wavelength region, as marked by the grey dashed lines on the spectra plot (b). �

the choice of phase function that leads to this di↵erence. Rooney et al. (2023) conducted an investigation into the
accuracy gain when applying four-term spherical harmonics to predict the scattering of reflected light in atmospheres,
and compared geometric albedo produced by SH2, SH4 and Toon89 with the doubling method, calculated by Liou
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(1973). The authors concluded that SH2 and Toon89 performed comparably, and that the choice between spherical
harmonics or discrete-ordinates had little impact on the solution accuracy when compared to the doubling method.
The only di↵erence between the SH2 method applied in this work and that applied in Rooney et al. (2023) is the
thermal source and boundary conditions, which are identically applied to Toon89 in PICASO. However, the PICASO

implementation of Toon89 for reflected light leverages a post-processed Henyey-Greenstein phase function for direct
scattering, opposed to the hemispheric mean approach used in infrared (Batalha et al. 2022).
For a clearer understanding of how SH4 compares to SH2, we also plot the percentage di↵erence between 16-stream

CDISORT and Toon89, SH2 and SH4 in Figure 3. We notice that the largest deviance of SH2 from 16-stream CDISORT

is around 8.5%, whereas SH4 is always within 2.5%.
We conduct the same analysis for the Jupiter-like profile in Figure 4, where the infrared spectra predicted by 16-

stream CDISORT, Toon89, SH2 and SH4 are plotted on the right, alongside the single scattering, asymmetry and
optical depth profiles with pressure, averaged in the wavelength range 8.2–9µm. We notice immediately that the four
models are in close agreement throughout the entire wavelength range, with the greatest di↵erences evident between
8–9µm and for wavelengths greater than 13µm. We attribute this to the di↵erent cloud condensate optical properties
of the Jupiter-like profile. The cloud profile in this case is also shaped by two cloud layers: one larger cloud deck
around 1 bar and another smaller optical depth cloud layer around 0.02 bar. In the high optical depth region, the
associated optical properties range between 0.8–0.94 for the asymmetry and 0.53–0.8 for the single scattering. Since
this atmosphere exhibits greater forward scattering but with lower values for the single scattering albedo, this suggests
that the accuracy of SH4, SH2, and Toon89 methods are highly dependent on what the strength of scattering and
asymmetry of the cloud is.
We again plot the percentage di↵erence between 16-stream CDISORT and Toon89, SH2 and SH4 in Figure 5, and

observe a maximum deviance around 11% for Toon89 (ignoring wavelengths less than 6.6µm where spectra values
themselves are very small). We also notice that SH2 and SH4 exhibit e↵ectively identical agreement with 16-stream
CDISORT, with percentage di↵erences staying below 3.5%.

4.2. Dependence of accuracy on scattering parameters

Since it is clear that there is a large accuracy dependence on single scattering and asymmetry, we compare the
spectra produced by Toon89 and SH4 with 32-stream CDISORT for a range of single-scattering albedos and asymmetry
parameters in a test atmosphere. We define the test atmosphere with the same pressure-temperature and optical depth
profile as the Te↵ = 1270K case studied in Section 4.1, however we force the cloud single-scattering albedo w0 and
asymmetry parameter g0 to take constant values for clarity. We sweep over a grid of parameter values and calculate

Figure 3. Percentage di↵erences between the spectra produced by CDISORT and Toon89, SH2 and SH4 for the Te↵ = 1270K
profile, where HG and hem-mean indicates that the model phase function is Henyey-Greenstein or hemispheric mean respectively.
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(a) (b)

Figure 4. Comparison between the infrared spectra predicted by 16-stream CDISORT, PICASO, 2-term spherical harmonics (SH2)
and 4-term spherical harmonics (SH4) for a Jupiter-like profile. The scattering properties plotted in subfigure (a) correspond
to the average values within the 8.2-9µm wavelength region, as marked by the grey dashed lines on the spectra plot (b). �

the resulting spectra for each of our three models. We consider w0 in the range 0.1–1.0, and g0 in the range 0.0–0.9.
Note that we consider a finer grid for high (w0 >0.9) single-scattering albedo. Taking an average of the spectra values
over the wavelength range 1–10µm for each pair of w0 and g0 values, we calculate the percentage di↵erence between
32-stream CDISORT and each of Toon89 and SH4. We plot the results as heatmaps in Figure 6, where Figure 6(a)
depicts the percentage di↵erence in infrared flux between Toon89 and 32-stream CDISORT, and Figure 6(b) displays
that of SH4 and CDISORT. To further elucidate for which parameters SH4 and Toon89 better agree with CDISORT, we
subtract the absolute percentage di↵erence of SH4 with CDISORT from that of Toon89, and plot the result in Figure
6(c). In the red-colored regions, SH4 out-performs Toon89 when compared to CDISORT. The white regions represent

Figure 5. Di↵erences in spectra for cloudy Jupiter.
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the cases where SH4 and Toon89 have comparable agreement with CDISORT. The blue-colored regions represent when
Toon89 is in closest agreement with CDISORT.
We see from Figure 6 that Toon89 exhibits a maximum percentage di↵erence of around 60% with 32-stream CDISORT

for high asymmetry (g0 > 0.8) and moderate single-scattering albedo (0.5 < w0 < 0.8). The lowest errors occur for
extreme values of single scattering, namely w0 = 0.1 and w0 > 0.99. We note the excellent agreement for w0 = 0,
which validates the justification of using the hemispheric mean phase function by Toon et al. (1989) to ensure correct
emissivity in the w0 = 0 limit.
Superior agreement is achieved by SH4 when compared with 32-stream CDISORT, with the maximum error of -6%

occurring for single-scattering albedo exceeding 0.95. By comparing the two heatmaps in this region, we see that
Toon89, using the hemispheric mean approximation, agrees more closely with 32-stream CDISORT than SH4, even
though both SH4 and CDISORT use the Henyey-Greenstein phase function. This implies that for high single-scattering
(w0 = 1), the hemispheric-mean approximation marginally outperforms low-order spherical harmonic expansions for
the Henyey-Greenstein phase function.

4.3. Timing-accuracy trade-o↵

Despite the improvements of moving to SH4, we still must consider the timing-accuracy trade-o↵. To elucidate this,
we analyze the computational expense of SH2 and SH4 as the number of layers is increased from 40 to 140, alongside
the maximum percentage di↵erence of their thermal spectra with that of a 16-stream, 140-layer CDISORT model. We
run this analysis on the Te↵ = 1270K atmosphere studied above, over a wavelength range of 0.7–2µm and plot our
results in Figure 7.
As the focus of the present study is to assess the trade-o↵ between computational expense and model accuracy,

we compare only SH2 and SH4 to CDISORT to illustrate the increase in cost and improvement in agreement with
higher-fidelity models when moving from two to four terms. The modelling approach of SH2 and SH4 is identical
bar the number of terms, whereas the Toon89 methodology di↵ers both in model choice (discrete-ordinates versus
spherical harmonics) and phase function (hemispheric mean versus Henyey-Greenstein). In an attempt to attribute
any di↵erences in computational expense and agreement with CDISORT to only the number of layers chosen for the
model, we compare SH2 with SH4.
From Figure 7(a) we see an increase in computational expense, t, for both SH2 and SH4 when the number of layers,

N , is increased from 40 to 140 scaling approximately as t = O(N). Overall, SH4 is approximately twice as expensive
as SH2. However, in Figure 7(b) SH4 has a significant increase in model agreement with the CDISORT test case as
we increase the number of layers from 40 to 140. For 140 layers, SH4 is within 2% of CDISORT versus 9.7% for SH2,

(a) Toon89 (b) SH4 (c) Di↵erence between figs (a) and (b)

Figure 6. Heatmaps depicting the percentage di↵erence in average flux produced by (a) Toon89 and (b) SH4 with 32-stream
CDISORT. Figure (c) is produced by subtracting the absolute percentage di↵erences of SH4 from that of Toon89 to elucidate for
which parameters one method agree with CDISORT better than the other. Dark-red represents cases where SH4 outperforms
Toon89, as compared to CDISORT. White (toward zero) represents cases where Toon89 and SH4 perform comparably. �
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illustrating that although twice as slow as SH2, SH4 is nearly five times more accurate when benchmarked against
16-stream CDISORT.
In cases where model accuracy is important and in the single scattering/asymmetry regions outlined in Section 4.2,

SH4 is the obvious choice due to its superior agreement with higher-fidelity models over its lower-term counter-model
SH2. However, in the instance when rapid solutions are required, the additional computational expense of SH4 might
be undesirable and the e�cient SH2 will be the model of choice.

5. CONCLUSION

Following from the analysis conducted by Rooney et al. (2023), we extended the spherical harmonics approach to
solving the radiative transfer equation, implemented in modelling software PICASO Batalha et al. (2022), to thermal
emission. In particular, we considered a four-term expansion of spherical harmonics, an increase from the original,
two-stream implementation in PICASO, which we denoted Toon89 to reflect its heritage from Toon et al. (1989). The
general spherical harmonics methodology for reflected light and thermal emission is largely the same, except for the
source function, boundary conditions, and use cases. The main objective of this work was to build on the rigorous
derivation of the model for reflected light studied by Rooney et al. (2023), and explain the di↵erences in the model
for thermal emission. Without re-deriving every equation in the model, we highlighted the di↵erences incurred by
considering a thermal source, and outlined the relevant matrix systems being solved by the model.
To explore the accuracy performance of the four-stream spherical harmonics model, we compared our results to

CDISORT (Stamnes et al. 2000). When considered alongside two-term spherical harmonics and the two-stream Toon89
method, this analysis elucidated the increased e�cacy of higher-order approximations in radiative transfer calculations
for thermal emission, and also demonstrated the impact of the choice of phase function on the resulting spectra.
We studied the thermal spectra obtained via the two-stream Toon89 implementation, two and four-term spherical
harmonics and CDISORT in Section 4.1 for two di↵erent sample atmospheres. This investigation highlighted that the
choice of phase function has a large impact on the resultant spectra. The use of hemispheric mean in Toon89 created
spectra that were largely di↵erent (up to 60%) than those computed from SH2, which utilizes a Henyey-Greenstein
phase function. Additionally, we find that accuracy of the order of approximation (two versus four term) is highly
dependent on the single scattering albedo and asymmetry of the cloud profile. This motivated a deeper exploration of
how the accuracy of the radiative transfer method depends on both values.

(a) Computational time. (b) Maximum percentage di↵erence with 16-stream CDISORT.

Figure 7. Analyzing how the (a) computational time and (b) maximum percentage di↵erence of SH2 and SH4 with CDISORT

changes as the number of layers is increased from 40 to 140. We use a 16-stream, 140-layer CDISORT model to benchmark the
spherical harmonics against. We see an evident increase in computational expense with number of layers, where SH4 is twice
as slow as SH2 for the 140-layer case, however, the maximum percentage di↵erence with the benchmark decreases significantly
with layers for SH4, where SH4 is within 2% of CDISORT versus 9.7% for SH2.
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Therefore, we created a grid of models with a fixed atmosphere profile and varied asymmetry parameters and single-
scattering albedos to study the Toon89 and SH4 models performance when compared to 32-stream CDISORT. We found
that Toon89 performs particularly well for the limiting cases of single-scattering albedo, namely w0 = 0 and w0 = 1,
however su↵ered from substantial errors of around 60% for high asymmetry and moderate single-scattering. SH4
experiences maximum error of around -6% for high single-scattering.
Finally, we analyzed the timing-accuracy trade-o↵ for the spherical harmonics methods when increasing the number

of model layers. By calculating the maximum percentage di↵erence between the thermal spectra produced by SH2 and
SH4 with 16-stream, 140-layer CDISORT, we discussed the sacrifice in computational speed for model agreement. This
study elucidated that, although increasing model approximation order from two to four terms results in an increase in
computational expense, the increase in accuracy when bench-marked against CDISORT is significant. The SH4 model
took twice as long as SH2 to calculate the thermal spectra, but produced a result that was nearly five times more
accurate when compared to 16-stream CDISORT, with a maximum percentage error of 2%. This analysis demonstrates
that a sacrifice of computational expense might be acceptable when a significant increase in accuracy is required from
the observational data accuracy, but may not be necessary if numerical e�ciency is the priority.
In conclusion, we have demonstrated that increasing the order of approximation from two to four streams can produce

significant improvement on model accuracy when compared with high-order CDISORT. The spherical harmonics analysis
outlined in this paper is implemented in the PICASO framework, alongside the Toon89 methodology, and is available
for download and use Batalha et al. (2022). The Jupyter notebook, which reproduces our results, can be found on
Github as well � .
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APPENDIX

A. DERIVATION OF BOUNDARY CONDITION

To derive the boundary condition for the upward flux F+(⌧N ) for an atmosphere that continues below the lower-most
level in our model, we consider the intensity of emission at the surface given by Mihalas (1978), namely

I(⌧N , µ) = B(⌧N ) + µ
dB

d⌧
(⌧N ). (A1)

Recalling the expressions for F±(⌧) = 2⇡
R ±1

0
I(⌧, µ)µdµ and f±(⌧) = ⇡

R ±1

0
I(⌧, µ)(5µ3

� 3µ)dµ, we obtain the
boundary conditions

F+(⌧N ) = ⇡

✓
B(⌧N ) +

2

3

@B

@⌧
(⌧N )

◆
, (A2)

f+(⌧N ) = �
⇡B(⌧N )

4
. (A3)

Similarly, for the case of a hard-surface at the lower-most layer in our model, the intensity of emission at the surface
is taken as that of a blackbody:

I(⌧N , µ) = B(⌧N ). (A4)

Proceeding as above we arrive at

F+(⌧N ) = ⇡B(⌧N ), (A5)

f+(⌧N ) = �
⇡B(⌧N )

4
. (A6)

Including the e↵ect of surface reflectivity AS , hence, we obtain the boundary conditions

F+(⌧N ) = ⇡B(⌧N ) +ASF
�(⌧N ), (A7)

f+(⌧N ) = �
⇡B(⌧N )

4
+ASf

�(⌧N ). (A8)

Note that to minimize the e↵ect of the choice of the lower boundary condition on the computed emergent flux it is
always best practice to have the lowermost model layer lie at high optical depth at all wavelengths where practicable.
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